DECIMAL COMPETENCY PACKET

Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004
Student Support Center North Shore Community College

In this booklet arithmetic operations involving decimal numbers are explained. If you have not already reviewed the Fraction booklet, please do so before working through this one.

Calculators are not allowed when taking the Computerized Placement Test (CPT), nor in Fundamentals of Mathematics, PreAlgebra, and Elementary Algebra; therefore, do not rely on a calculator when working the problems in this booklet.

To use this booklet, review the glossary, study the examples, then work through the exercises, and check your answers at the end of the booklet. When you find an unfamiliar word, check the glossary for a definition or explanation. The last several pages are Place Value Charts that will be helpful to you. Remove those pages for easier use.

If you have difficulty understanding any of the concepts, come to one of the Tutoring Centers located on the Lynn, Danvers Main and Danvers Hathorne Campuses. Hours are available at (978) 762-4000 x 5410. Additional Tutoring Center information can be found on the NSCC website at www.northshore.edu/services/tutoring.

The Centers are closed when school is not in session, and Summer hours are limited.

Table of Contents

Glossary 5
General Decimal Information 6
Place Value 7
Writing and Reading Decimals 8
Translating Numerical Expressions 9
Decimal Fractions 10
Comparing Decimals 11
Rounding 12
Addition 14
Subtraction 15
Multiplication 16
Multiplication by Multiples of 10 17
Division by Multiples of 10 18
Division by Whole Numbers 19
Division by Decimals 20
Converting Fractions to Terminating Decimals 21
Converting Fractions to Repeating Decimals 22
Converting Decimals to Fractions 23
Decimal Word problems 24
Answers 27
Place Value Charts 30

Glossary

Decimal or Decimal Number

Decimal Point

Denominator

Difference

Digit

Division

Factor

Multiple

Non-Repeating Decimal

Numerator

Any number that includes place value to the right of a decimal point.

A dot or point that separates the decimal value from the integral value of a number.

The bottom number of a fraction. It represents the number of pieces needed to make one whole. (See Fraction booklet for more information.)

The result when two numbers are subtracted. The order of subtraction is important. A - B means that the number represented by B is subtracted from A, that is A is the "top number" in a vertical subtraction.

The symbols $0,1,2,3,4,5,6,7,8,9$ are the digits of the Base ten number system.

Arithmetic operation:
Dividend \div Divisor $=$ Quotient
Expressed as a fraction: $\frac{\text { Dividend }}{\text { Divisor }}=$ Quotient
$\begin{array}{ll}\text { or using a "division house" divisor } & \text { quotient } \\ \end{array}$
Each of the numbers that are multiplied, i.e. in the product $7 \times 9=63$ the numbers 7 and 9 are factors.

A number which is the product of a given number and another factor; Multiples are equal to or larger than the given number, i.e. the multiples of 3 are: $3,6,9,12,15, \ldots$

A decimal representation that has no pattern of repetition in the digits after the decimal point.

The top number of a fraction. It represents the number of pieces of a certain size considered for the expression. (See fraction booklet for more information)
Place Value The position a digit holds in a number. It tells us the
value of the digit. (See chart page 7)

Repeating
Decimal

Sum
Terminating
Decimal

Product The result when two numbers are multiplied.
Quotient The result when two numbers are divided.
A numerical representation that has a pattern of digits that repeats to infinity. $0.323232 \ldots$ is a repeating decimal, and can be written as $0 . \overline{32}$

The result when two numbers are added.
Every fraction can be written as a decimal by dividing the denominator into the numerator if there no remainder, the decimal will terminate.

Whole Numbers Positive numbers with no fractional or decimal portion.

General Decimal Information

- Our number system is a decimal system using the digits: $0,1,2,3,4,5$, 6, 7, 8, and 9, called the Base Ten Number System.
- Only positive numbers will be used in this booklet.
- Whole numbers are decimal numbers with no fractional part; a decimal point is assumed to be to the right of the whole number. (i.e., $15=15.0$)
- Numbers with no whole number component will be written with a zero preceding the decimal point. (i.e., 0.23)
- Digits to the right of a decimal point represent fractional parts with a denominator of a multiple of ten.
- Digits to the left of the decimal point are separated into groups of three using commas.

Place Value

The position of a digit in a number reflects the "place value" of that digit. In the following table, the number represented has value according to the place the digit " 1 " holds in each case. (Note the use of commas.)

In the following chart, note the similarity of place value names on both sides of the decimal. Those places to the right of the decimal end in "ths" indicating that they are fractional.

In a spoken or written number, the word "and" reflects placement of a decimal point. Although each number uses the same digits, (ones and zeros), the value of each number in the chart above is very different. The numbers, in order of the chart, are read:
one million and one millionth one hundred thousand and one hundred-thousandth ten thousand and one ten-thousandth one thousand and one thousandth one hundred and one hundredth ten and one tenth one and no tenths, or more commonly, one one tenth

Writing Decimals

Place value is reflected when writing and reading decimal numbers in words.
In writing the decimal is represented by the word "and."
Example:
4.7
70.024
is written
is written
"four and seven tenths."
"seventy and twenty-four thousandths."

Write the following in words as you would write the number. (Use the chart at the end of the booklet to aid with number placement.)

1) 20.15
2) 4.05
3) 45.21
4) 15.196
5) 7.0007
6) $2,049.009$
7) $\quad 1.1$
8) 0.005
9) 1928.07

Translating Numerical Expressions

To translate written numerical expressions, place the last written number in the correct place value.	
Example: Twenty and ninety- six thousandths 20.096	Six, (6) the last digit belongs in the thousandths place. (Third place to the right from the decimal point.)
20.096	Zero must be entered in the tenths place.

Write the following using digits. (Use a chart if needed)

1) four and five tenths
2) fourteen hundredths
3) one thousand nine hundred seventy-two ten thousandths
4) four hundred seven and three hundred twenty-eight thousandths
5) one tenth
6) seven and nine hundredths
7) one hundred seventy-two ten-thousandths
8) twenty-two and five tenths
9) twenty and four hundred ninety-six thousandths
10) three hundred and three hundredths

Decimal Fractions

A decimal number is another way to write a fraction with a denominator of a multiple of ten, (i.e., denominators equal to $10 ; 100 ; 1,000 ; 10,000$; etc.) To convert a fraction with a denominator of a multiple of ten to a decimal, read the fraction and write as a decimal number.

Example:

$$
3 \frac{7}{10}
$$

is read " three and seven tenths"
$3.7 \quad$ expressed with digits
Example:
$15 \frac{234}{1000}$
is read " fifteen and two hundred thirty-four thousandths"
expressed with digits
Example:
$\frac{5}{100}$
0.05
is read " five hundredths" expressed with digits. Note the zero placement.

Write as a decimal number.

1) $72 \frac{19}{100}$
2) $1276 \frac{3}{10}$
3) $301 \frac{7}{1000}$
4) $1 \frac{6}{100}$
5) $\frac{17}{100}$
6) $\frac{24}{1000}$

Comparing Decimals

To compare decimals, write the decimal numbers with the same number of decimal places and decide which is larger.	
Example: Which is greater: 0.9 or 0.91 ?	To compare write both numbers with two decimal places. Note zeros may be added or deleted from the right and after the decimal point.
0.90 ? 0.91	Compare digits in hundredths place. 1 is greater than 0; therefore, 0.91 is greater. (hint: Consider money)
Write the following from smallest to largest: $0.78006,0.7845$, $0.7851,0.785,0.78$	Write the list adding zeros to hundred thousandths place as needed.
$\begin{aligned} & 0.78 \underline{0} 06,0.78450, \\ & 0.78 \underline{\underline{1}} 10,0.78 \underline{5} 00, \\ & 0.78 \underline{0} 00 \end{aligned}$	Since the digits in the tenths and hundredths places are the same, compare the digits in the thousandths place first. Then compare the digits in the remaining places.
$\begin{aligned} & 0.78000,0.78006, \\ & 0.78450,0.78500, \\ & 0.78510 \end{aligned}$	Re-write the list from smallest to largest.

Write from smallest to largest:

1) $12.34,1.234,0.1234$
2) $0.1,0.01,1.001$
3) $3.1,0.031,0.331$
4) $0.06,0.4,0.9$
5) $0.12,0.16,0.2,0.48,0.054$
6) $0.08,8.08,8.808,8.888,0.088,0.8$

Rounding

To round numbers for estimation:

1. Identify the place value to be rounded. All digits to the left of that place remain the same.
2. Check the number to the immediate right of the place to be rounded:
a. If the digit in that place is 5 or greater, add one to the digit in the place to be rounded.

OR

b. If the digit in that place is $\mathbf{4}$ or less, do not change the digit in the place to be rounded.
3. Fill in the remaining place values to the right of the place to be rounded with zeros, or drop the digits after the decimal point.

Example:

Round 1792 to the hundreds place.

18 _ -
$18 \underline{0} 0$

Example:

Round 73.64 to the tenths place.
73.6
$73 . \underline{60}=73.6$

Example:

Round 49.897 to the hundredths place.
49. $8^{1} \underline{0}_{-}$
49.(8+1) $\underline{0}^{-}$
49.90

Identify the place value to be rounded, (7 hundred). Write the digit(s) to the left (1). Identify the number to the right (9).
9 is greater than 5 ; add one to 7 , $(7+1=8)$, enter 8 in the hundreds place.
Fill in all the places to the right with zeros.

Identify the place value to be rounded, (6 tenths). Write the digits to the left (73). Identify the number to the right (4).

4 is less than 5, 6 remains in the tenths place.
It is not need to fill in all the places to the right with zeros; rounding to tenths place.

Identify the place value to be rounded, (9 hundredths). Write the digits to the left (49.8). Identify the number to the right, (7).

7 is greater than 5 , add one to 9 . Since $9+1=10$, a zero is entered in the hundredths place, and the 1 is carried to the tenths place.

The 1 is added to 8 .
The zero is needed to represent the hundredths place.

Round these numbers as indicated.

1) Tenths
62.87
2) Units
33.97
3) Units
14.45
4) Hundredths
49.995
5) Ten thousandths
3.56906
6) Thousandths
5.0074
7) Tenths
3.1416
8) Thousandths
0.6739
9) Hundreds
459.326
10) Tenths
1.98
11) Tenths
19.77
12) Ten thousandths
0.01704
$\begin{array}{llll}\text { 7) Thousandths } & 0.0067 & \text { 15) Hundredths } & 0.01011 \\ & & & \\ \text { 8) Tens } & 389.88 & \text { 16) Thousandths } & 0.0007\end{array}$

Addition

To add decimals, write the numbers vertically with the decimal points directly under each other, then add the digits.
Note: When the decimal points are lined up, the digits are automatically lined up in the correct place value.

Example:

$13.2+1.57$
13.20
$+1.57$

Example:
$\$ 437+\$ 41.56+\$ 0.18$
$\$ 437.00$
41.56

$+\quad 0.18$

$\$ 478.74$
Write the problem vertically. Line up the decimal points.
Note the additional zero. Adding zeros to the right of the final digit after the decimal does not change the value of the number.

Dollar values are the most familiar decimal values.
Write the problem vertically. Line up the decimal points.

The additional zeros are optional, but help with placement. Note dollar sign use.
Find the Sum (Add):

1) $0.03+0.4$
2) $0.3+0.03+0.003$
3) $10+9.6+3.76+8.451$
4) $2.05+0.561+43.9+17.32$
5) $\$ 4+\$ 14.01$
6) $2,134.07+306.5+2.109$
7) $8.0632+0.234+0.81+0.064$
8) $56.3701+0.268+4.2$

Subtraction

| To subtract decimals, write the numbers vertically with decimal points |
| :--- | :--- |
| directly under each other, and add zeros when needed, then subtract the |
| digits. |
| Note: When the decimal points are lined up, the digits are automatically |
| lined up in the correct place value. |

Find the Difference (Subtract):

1) 8.4-7.35
2) 4.355-1.647
3) $12.5-8.7$
4) $60.54-0.928$
5) $\$ 17.50-\$ 6.25$
6) 89.-58.46
7) $\$ 18-\$ 5.63$
8) 104.003-21.78

Find the Sum and Difference as indicated, (in the order indicated):
9) 14.6-1.98+3.7
11) $0.19+2.34-1.003$
10) $5.67+0.34-2.05$
12) $\$ 21.90-\$ 0.45-\$ 2.34$

Multiplication

To multiply decimals, write the problem and multiply as you would a whole number multiplication problem. The product (answer) of two decimal numbers has the same number of decimal places after the decimal point as the total number of decimal places in the two numbers being multiplied.

Example: 0.19×0.4	Write vertically. (The decimal points do not have to line up.)
$\begin{array}{r}0.19 \\ \times 0.4 \\ \hline\end{array}$	2 decimal places (Decimal points not lined up.)
0.076	$\frac{+1 \text { decimal place }}{3 \text { decimal places }}$
Example: 708	Count from right to left; add a zero before the decimal point.
¢ 0.32	
+ 1416	0 decimal places (Decimal points not lined up.)
21240	+ 2 decimal places
226.56	2 decimal places
	Count from right to left to place decimal point.

Find the Product (multiply):

1)

0.32
0.6
\times
4)
5.048
5.03
$\times 2.03$
7)
0.075
$\begin{array}{r}0.075 \\ \times 5.4 \\ \hline\end{array}$
2)
1.9
0.05
\times
5)
0.15
8)
99
$\begin{array}{r}\times 1.1 \\ \hline\end{array}$
3) $\begin{array}{r}400 \\ \times \quad 0.17 \\ \hline\end{array}$
6)
2.4
9)
2.029

$\times 10.8$

Multiplication by Multiples of 10

To multiply by a multiple of ten, move the decimal point RIGHT as many places as there are zeros in the multiplier.	
Example: 24.6×10	There is one zero in the multiplier (10); therefore, the decimal point moves right one place.
$\begin{aligned} & \text { Example: } \\ & \begin{aligned} 0.048 & \times 1000 \\ & =48.7 \end{aligned} \end{aligned}$	There are three zeros in the multiplier (1000); therefore, the decimal point movers right three places.
$\begin{aligned} & \text { Example: } \\ & \begin{aligned} & 24.6 \quad \times 100 \\ &= 2,460.0 \end{aligned} \end{aligned}$	There are two zeros in the multiplier, (100); therefore, the decimal point moves right two places. Note the additional zeros.

Multiply:

1) $4.83 \times 10=$
2) $35.961 \times 100=$
3) $83.5 \times 1000=$
4) $90.2 \times 100=$
5) $10.37 \times 10=$
6) $0.76 \times 1000=$
7) $0.08 \times 10=$
8) $476.098 \times 10,000=$

Division by Multiples of 10

To divide by a multiple of ten, (10; 100; 1,000; etc.), move the decimal point to the LEFT as many places as there are zeros in the divisor.

Example:

$$
\begin{aligned}
78.2 & \div 10= \\
& =7.82
\end{aligned}
$$

Example:

$0.32 \div 1000$ $=0.00032$

There is one zero in the divisor (10), therefore the decimal point moves left one place.

There are three zeros in the divisor (1000), therefore the decimal point moves left three places. Note the additional zeros.

Divide:

1) $82.5 \div 100=$
2) $78.567 \div 10=$
3) $923.8 \div 1000=$
4) $54.87 \div 1000=$
5) $0.754 \div 10=$
6) $20.35 \div 10=$
7) $0.845 \div 100=$
8) $63.8 \div 100=$
9) $6200 \div 10,000=$

Division by Whole Numbers

To divide a decimal by a whole number, place the decimal point in the quotient directly above the decimal point in the dividend to ensure the correct place value. Divide as with whole numbers.

Example:

$5 . 5 \div 5 = 5 \longdiv { 5 . 5 }$
$5 \begin{array}{r}\begin{array}{r}1.1 \\ \underline{5} .5 \\ \underline{5} \\ 5 \\ \underline{5} \\ 0\end{array}\end{array}$

Example:

$$
\frac { 2 2 . 5 } { 3 } = 3 \longdiv { 2 2 5 }
$$

$3 \longdiv { 2 2 . 5 } \begin{array} { r } { 7 . 5 } \\ { 2 1 } \end{array}$
15
15
0

Divide:

Write the problem with a "division house," placing the quotient's (answer's) decimal point directly over the decimal point of the dividend.

A fraction is another way to express a division problem. The divisor is the denominator and the dividend is the numerator.

Write the problem with a "division house," placing the quotient's (answer's) decimal point directly over the decimal point of the dividend.
2) $\frac{0.84}{4}$
3) $\frac{0.096}{8}$
5) $\frac{3.96}{9}$
6) $0.016 \div 2=$
8) $\frac{34.5}{5}$
9) $\frac{1.49}{2}$

Division by Decimals

In division, the divisor must be a whole number. To convert a decimal divisor to a whole number, multiply the divisor and the dividend by a multiple of ten. Then divide as usual.
Example:
$4.9 \div 0.7$
$(4.9 \times 10) \div(0.7 \times 10)$
$49 \div 7=7$

Example:

$\frac{8.505}{0.05} \times \frac{100}{100}=\frac{850.5}{5}$

$$
\begin{aligned}
& \begin{array}{l}
170.1 \\
5 \longdiv { 8 5 0 . 5 } \\
\underline{5} \\
35 \\
\underline{35} \\
\hline 005 \\
\quad 5 \\
\hline 0
\end{array}
\end{aligned}
$$

The divisor (0.7) has one decimal place. To change the divisor to a whole number, multiply the divisor and the dividend by 10.
Divide as usual.

The divisor (0.05) has two decimal places. To change the divisor to a whole number, multiply the divisor and the dividend by 100.

Divide as usual. Place the decimal point for the quotient (170.1) directly above the decimal point in the dividend (850.5)

Divide:

1) $574.0 \div 0.7$
2) $35.1 \div 2.7$
3) $82.8 \div 0.03$
4) $0 . 4 \longdiv { 6 . 9 8 8 }$
5) $\quad 2 . 4 \longdiv { 7 7 . 0 4 }$
6) $0 . 4 1 \longdiv { 2 0 5 }$
7) $\frac{0.0144}{1.2}$
8) $\frac{0.132}{0.011}$
9) $\frac{0.6832}{0.004}$

Converting Fractions to Terminating Decimals

To convert a fraction to a decimal, divide. Some fractions will convert to a decimal representation with a remainder of zero, called a terminating decimal.

Example:
 Convert to a Decimal

$$
\frac { 3 } { 1 2 } = 1 2 \longdiv { \underline { 0 . 2 5 } } \begin{array} { | c }
{ \underline { 2 4 } }
\end{array}
$$

$$
60
$$

$\frac{60}{0}$
$\frac{3}{12}=0.25$
Example:
Convert to a Decimal
$11 \frac{5}{25}=11+25 \frac{0.20}{5.00}$

$$
11 \frac{5}{25}=11.20
$$

Convert to a Decimal:

1) $\frac{9}{18}$
2) $\frac{15}{30}$
3) $\frac{48}{32}$
4) $\frac{6}{16}$
5) $5 \frac{2}{20}$
6) $\frac{9}{20}$
7) $\frac{13}{50}$
8) $47 \frac{37}{50}$

Converting to Repeating Decimals

To convert a fraction to a decimal, divide. Some fractions will convert to a decimal representation with pattern, called a repeating decimal.

Example:

$\frac { 2 } { 3 } = 3 \longdiv { 0 . 6 6 6 \ldots }$
$\frac{18}{2.000 \ldots}$

20
$\underline{20}$
20
$0.666 \ldots=0 . \overline{6}$

Example:

$\frac{34}{11}=11$$3.0909 \ldots$ $\frac{33}{100}$ $\frac{99}{100}$ $\frac{99}{1}$

$3.0909 . . .=3 . \overline{09}$

Divide two by three. Note that the remainder will continue to be two; therefore, the decimal answer is a repeating decimal.

Repeating decimals are written with a bar over the repeating digits in the pattern.

Divide 34 by 11. Since 11 does not divide 10, there is a need to bring down an additional zero. Note that there is a portion of the quotient that does not repeat.

The bar indicates that only the 09 repeats.

Convert:

1) $\frac{1}{11}$
2) $1 \frac{1}{3}$
3) $\frac{1}{33}$
4) $8 \frac{1}{6}$
5) $\frac{4}{9}$
6) $\frac{7}{33}$
7) $\frac{1}{3}$
8) $\frac{7}{42}$
9) $\frac{3}{22}$
10) $4 \frac{2}{3}$

Converting Decimals to Fractions

To convert a terminating decimal to a fraction, write the decimal with the place value multiple of ten as a denominator and reduce to simplest terms.

Example:
$3.2=3 \frac{2}{10}$

$$
3 \frac{2}{10}=3 \frac{1}{5}
$$

The decimal fraction portion of the number terminates in the tenths place; therefore the denominator will be 10.

This fraction is not in lowest terms, therefore must be reduced. Divide numerator and denominator by 2.

To convert a repeating decimal to a fraction, use a value of 9 as the denominator.
Example:
$3 . \overline{09}=3 \frac{9}{99}$
$3 \frac{9}{99}=3 \frac{1}{11}$

The repeating pattern ends in the hundredths place, therefore the denominator will have two nines, or be 99.

This fraction is not in lowest terms, therefore must be reduced. Divide numerator and denominator by 9

Convert:

1)

7.85
6) $34.0 \overline{102}$
2) $10 . \overline{3}$
7) $7 . \overline{7}$
3)
2.08
8) 10.425
4)
$0 . \overline{45}$
9) 0.006
5)
0.360
10) $2 . \overline{360}$

Word Problems

To solve a word problem, read the problem and express what you are trying to learn in your own words. Identify the operation to be used, (addition, subtraction, multiplication, or division). Translate the problem from words to math symbols, (i.e. write an equation). Solve the equation.

Example:

Carlos bought one pair of shoes for \$19.95, two neckties for $\$ 3.95$ each, three pairs of socks for $\$ 1.25$ a pair, and one suit for $\$ 89.95$. What was the total cost?

Trying to learn total Total cost usually implies addition. cost of the items.
\$ 19.95
7.90
3.75
$\quad 89.95$
$+\$ 121.55$

One pair of shoes
3.95×2 Two neckties
1.25×3 Three pair of socks
One suit
Add with decimal points lined up.

Example:

Nora made 18 equal monthly payments on her new stereo set. If the total cost of the set was \$355.00, what was her monthly payment? (Round off to the nearest cent.)

Trying to learn Nora's monthly payment.

$$
\$ 355.00 \div 18
$$

$1 8 \longdiv { \frac { 1 8 } { 3 5 5 . 0 0 } } \begin{array} { r } { 1 9 . 7 2 } \\ { \frac { 1 8 } { 1 7 } } \end{array}$
175
162
130
126
40
36
4
The monthly payment is $\$ 19.72$.

Total and number of months are given. Division is implied

Total divided by number of months gives each month's payment. The answer must be to the nearest cent; that is rounded to the hundredths place.

Divisor is a whole number.

To continue the division, another zero may be added. However, the next digit in the quotient will be a 2 and by the rules of rounding, will not effect the current quotient.

Solve the following.

1) The $\$ 146.35$ cost of a party was shared by 10 people. How much did each person have to pay? (Be sure to round your answer to the nearest cent.)
2) 537 people attended a $\$ 100$ dollar a plate fund raising dinner for the NSCC Foundation. How much money did this dinner raise?
3) At the beginning of the month, Jim's bank balance was $\$ 275.38$. During the month he wrote the following checks: $\$ 174.89$, $\$ 68$, and $\$ 57.76$. He made deposits of $\$ 250$ and $\$ 350$. Find his bank balance at the end of the month.
4) Rudy drove his car 9,600 miles last year. His total car expenses were $\$ 625$ for the year. Find the average cost per mile. (Round off your answer to the nearest hundredth)
5) A garden is 33.75 feet long and 21.6 feet wide. Draw a diagram of the garden with the lengths written on all four sides. What is the total distance around the garden?
6) A car traveled at 50 miles an hour for 2.5 hours. How far did it go?
7) A can of ham weighing 7.75 pounds costs $\$ 11.86$. What does the ham cost per pound? (Round to the nearest cent.)
8) A park is 4.6 miles long and 2.7 miles wide.
a. What is the total distance around the park?
b. If a racecar drove 50 times around the park, how far will it have to go?

Answers to Exercises

Page 8

1. Twenty and fifteen hundredths
2. Forty-five and twenty-one hundredths
3. Fifteen and one hundred ninety-six thousandths
4. Two thousand, forty-nine and nine thousandths
5. Eight thousandths
6. Four and five hundredths
7. Two hundred seventyeight and fifty-four hundredths
8. Seven and seven tenthousandths
9. One and one tenth
10.One thousand nine hundred twenty-eight and seven hundredths

Page 9

1. 4.5
2. 0.14
3. 0.1972
4. 407.328
5. 0.1
6. $\quad 7.09$
7. 0.0172
8. 22.5
9. 20.496
10. 300.03

Page 10

1. $\quad 72.19$
2. 301.007
3. 0.17
4. $\quad 1276.3$
5. $\quad 1.06$
6. 0.024

Page 11

1. 0.1234, 1.234, 12.34
2. 0.01, 0.1, 1.001
3. 0.031, 0.331, 3.1
4. $0.06,0.4,0.9$
5. $0.56,0.6$, 0.935, 1.2
6. $0.054,0.12$, $0.16,0.2,0.48$
7. $0.5382,5.038$, 5.0382, 50.382
8. $0.08,0.088$, 0.8, 8.08, 8.808, 8.888

Page 13

1. 62.9
2. 14
3. 3.5691
4. 3.1
5. 500
6. 19.8
7. 0.007
8. 390
9. 34
10. 50.00
11. 5.007
12. 0.674
13. 2.0
14. 0.0170
15. 0.01
16. 0.001

Page 14

1. 0.43
2. 0.333
3. 63.831
4. $\$ 18.01$
5. 9.1712
6. $\quad 48.84$
7. 31.811
8. $\$ 10.08$
9. 2442.679
10. 60.8381

	Page 15		Page 18		Page 21
1.	1.05	1.	0.825	1.	0.5
2.	3.8	2.	0.9238	2.	0.5
3.	\$11.25	3.	0.0754	3.	0.375
4.	\$12.37	4.	0.00845	4.	0.45
5.	2.708	5.	0.638	5.	0.26
6.	59.612	6.	7.8567	6.	0.475
7.	30.54	7.	0.05487	7.	1.5
8.	82.223	8.	2.035	8.	5.1
9.	16.32	9.	5.408	9.	77.175
10.	3.96	10.	0.6200	10.	47.74
11.	1.527				
12.	\$19.11				
	Page 16		Page 19		Page 22
1.	0.192	1.	0.3	1.	$0 . \overline{09}$
2.	0.095	2.	0.21		
3.	68.00	3.	0.012	2.	0.03
4.	10.24744	4.	0.066	3.	0.4
5.	0.0225	5.	0.44		03
6.	0.0312	6.	0.008	4.	0.3
7.	0.4050	7.	0.064	5.	0.136
8.	108.9	8.	6.9	6.	$1 . \overline{3}$
9.	21.9132	9.	0.745		
	Page 17		ge 20	7.	0.16
1.	48.3	1.	820		
2.	83,500	2.	17.47	8.	0.21
3.	9,020	3.	0.012		0.21
4.	103.7	4.	13	9.	0.16
5.	760	5.	32.1	10.	$4 . \overline{6}$
6.	0.8	6.	12		
7.	3,596.1	7.	2,760		
8.	82,600	8.	500		
9.	700.7	9.	170.8		
10.	729.53				
11.	987				
12.	4,760,980				

Page 23

1. $7 \frac{17}{20}$
2. $10 \frac{1}{3}$
3. $2 \frac{2}{25}$
4. $\frac{5}{11}$
5. $\frac{9}{25}$
6. $34 \frac{34}{3333}$
7. $7 \frac{7}{9}$
8. $10 \frac{17}{40}$
9. $\frac{3}{500}$
10. $2 \frac{40}{111}$

Page 25-26

1. $\$ 14.64$
2. $\$ 53,700$
3. $\$ 574.73$
4. $\$ 0.07$ per mile
5. 110.7 feet
33.75 ft .
21.6 ft .

6. 125 miles
7. $\$ 1.53$ per pound
8. a. 14.6 miles
b. 730.0 miles

Place Value Chart

							$\begin{gathered} \text { 』 } \\ \stackrel{\rightharpoonup}{む} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 5 \end{aligned}$	Decimal Point（and）	$\stackrel{n}{\stackrel{y}{\square}}$			syıpuesnoyı uәュ				
									－								
									\square								
									－								
									－								
									－								
									－								
									－								
									－								

Place Value Chart

							$\begin{gathered} \text { 』 } \\ \stackrel{\rightharpoonup}{む} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 5 \end{aligned}$	Decimal Point（and）	$\stackrel{n}{\stackrel{y}{\square}}$			syıpuesnoyı uәュ				
									－								
									\square								
									－								
									－								
									－								
									－								
									－								
									－								

Place Value Chart

			Hundred Thousands	spuesnou＿uә」			$\begin{aligned} & \text { 』 } \\ & \stackrel{\rightharpoonup}{む} \end{aligned}$		Decimal Point（and）				Ten Thousandths				
									．								
									－								
									\bullet								
									．								
									．								
									．								
									－								
									－								

